Rigidity and #exibility of triangle groups in complex hyperbolic geometry
نویسنده
چکیده
We show that the TeichmuK ller space of the triangle groups of type (p, q,R) in the automorphism group of the two-dimensional complex hyperbolic space contains open sets of 0, 1 and two real dimensions. In particular, we identify the TeichmuK ller space near embeddings of the modular group preserving a complex geodesic. 2002 Elsevier Science Ltd. All rights reserved. MSC: 32H20; 20H10; 22E40; 57S30; 32G07; 32C16
منابع مشابه
Complex Hyperbolic Triangle Groups
The theory of complex hyperbolic discrete groups is still in its childhood but promises to grow into a rich subfield of geometry. In this paper I will discuss some recent progress that has been made on complex hyperbolic deformations of the modular group and, more generally, triangle groups. These are some of the simplest nontrivial complex hyperbolic discrete groups. In particular, I will talk...
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملComplex Hyperbolic Ideal Tetrahedral Groups
Tetrahedral groups are defined as groups of complex reflections on four planes, such that those planes form a tetrahedral configuration with vertices in the boundary of HC. We prove that the complex tetrahedral groups that are complexifications of real groups (i.e. subgroups of PO(3, 1)) do not admit discrete deformations. To achieve this, the structure of the subgroups that stabilize the verti...
متن کاملCOMPLEX HYPERBOLIC (3, 3, n) TRIANGLE GROUPS
Complex hyperbolic triangle groups are representations of a hyperbolic (p, q, r) reflection triangle group to the group of holomorphic isometries of complex hyperbolic space H C , where the generators fix complex lines. In this paper, we obtain all the discrete and faithful complex hyperbolic (3, 3, n) triangle groups. Our result solves a conjecture of Schwartz [16] in the case when p = q = 3.
متن کاملNON-DISCRETE COMPLEX HYPERBOLIC TRIANGLE GROUPS OF TYPE (n, n,∞; k)
A complex hyperbolic triangle group is a group generated by three complex reflections fixing complex slices (complex geodesics) in complex hyperbolic space. Our purpose in this paper is to improve the result in [3] and to discuss discreteness of complex hyperbolic triangle groups of type (n, n,∞; k).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999